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ABSTRACT

Aspergillus oryzae is a filamentous fungus capable of degrading various substances 
employing enzymes, which is why it is widely used in the biotechnological industry, 
pharmaceutical products, enzymes for industrial use, bleaching agents, anti-
pollution textile treatments. However, few works focus on these microorganism’s 
field applications. This manuscript reviews the potentially beneficial applications 
of A. oryzae and some by-products in agriculture as biological control, growth 
inducer, and bioremediation for soils contaminated with heavy metals.

Keywords: Bioremediation, nematicide, insecticide, microorganisms, metabolites, 
non-toxigenic.

Introduction

The fungi of the Aspergillus spp. genus are considered a complex group of 
ascomycetes that compose 350 accepted species (Kocsubé et al., 2016). They 
are described as filamentous fungi, able to secrete a wide range of secondary 
metabolites and enzymes, whose function is to degrade and recycle biopolymers 
from plant tissues (El-Enshasy, 2007). The Aspergillus spp. genus is generally 
found in stored seeds, plants in decomposition and soil, where they develop as 
saprophytes (Mousavi et al., 2016).

Although fungi from the Aspergillus spp. genus are not considered important 
sources of phytosanitary diseases, they are responsible for alterations in plants 
and stored products; since they are opportunist molds, they prosper under storage 
conditions (Awuchi et al., 2021). This genus is also recognized for its production of 
mycotoxins, with around 300 and 400 identified, such as aflatoxins, secalonic acids, 
cyclopiazonic acid, aflatrem, citrinin, stregmatocystin, glycytoxin, ochratoxin A 
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(OTA) and terrein (Navale et al., 2021), with a potential health risk for humans 
and animals, as well as affecting the environment and having a negative effect on 
the world’s economy (Bueno et al., 2015). An important example of this type of 
toxic secondary metabolites are aflatoxins, which represent a hazard for farmers in 
postharvest and are considered indicators of biological soil degradation (Marshall 
et al., 2020). They bring about qualitative nutritional and sensory changes in plant-
based products, since the infection can produce unpleasant flavors or odors, rotting 
and discoloration (Kozakiewic, 1989). 

Some fungi of the Aspergillus spp. genus, such as A. flavus, A. nidulans, A. 
nomius and A. parasiticus, are agronomically important, since they produce 
aflatoxins (AF) (Hesseltine et al., 1970; Gomi, 2014). Mainly B1, B2, G1 and G2 
have proven to be strong carcinogenic, cytotoxic and potentially mortal biotoxins 
for humans and cattle (Ráduly et al., 2019). A. flavus has been reported as the 
cause of contamination with aflatoxins AFB1 in any stage of the peanut supply 
chain (imports, manufacturing and retail) in countries such as Malaysia, where 
the tropical climate conditions are favorable for the growth of this fungus (Norlia 
et al., 2018, 2019). In Mexico, maize has been affected by contamination with 
aflatoxins, in the same way as grains such as rice, barley, bean, sorghum, wheat, 
some oleaginous plants and dried fruits are susceptible to these biotoxins, produced 
by A. flavus (AFB1 and AFB2), A. parasiticus and A. nomius (AFG1 and AFG2) 
(Anguiano-Ruvalcaba et al., 2005; Escobar et al., 2023). 

It is worth highlighting the existence of non-toxicogenic strains within 
Aspergillus spp., which do not produce aflatoxins and which can be applied in 
the planting area, to then be installed, compete and displace the toxigenic strains, 
resulting in the reduction of aflatoxins (Marshall et al., 2020; Senghor et al., 2020). 
Non-toxicogenic A. niger, A. sojae and A. oryzae strains do not produce compounds 
that contain, essentially, a furan ring attached to the coumarin nucleus, important in 
the biosynthesis path of aflatoxins, and do not produce cyclopiazonic acid jointly 
with aflatoxins such as A. flavus (Dorner et al., 2000; Padrón et al., 2013). 

Aspergillus spp. strains that do not produce aflatoxins can be used as fungal 
biocontrol agents in the prevention of contamination with biotoxins (Barberis et 
al., 2019). Strains A. westerdijkiae 107, A. fumigatos C143, A. tamarii C122 and 
A. niger C187 have proven, in terms of inhibition and production of OTA, to have 
favorable results, with the strain A. niger C187 displaying an inhibition of 100% 
in the production of OTA and in the growth of A. ochraceus, A. westerdijkiae, 
A. carbonarius and A. niger in coffee grains (de Almeida et al., 2019). Likewise, 
they are used in the pharmaceutical industry and in industrial processes such as the 
fermentation of foods, since they are abundant sources of enzymes such as proteases, 
amylases and amylglucosidases, and others (Schuster et al., 2002; Olempska-
Beer et al., 2006; Samson et al., 2014; Gómez et al., 2016). The production of 
polygalacturonase (Exo-PGs), a consortium of enzymes required for the hydrolysis 



Mexican Journal of Phytopathology. Review. Open access

García-Conde et al.,  2024. Vol. 42(1): 1. 3

of pectin, is one of the applications of the strain A. sojae ATCC 20235, useful in the 
depectinization and clarification of fruit juices, the extraction of oils from the skins 
of vegetables and citrus fruits, and treating wastewater (Tari et al., 2008). 

Therefore, because A. oryzae has non-toxigenic strains, it figures as one of 
the most important species, due to its potential use as a biotechnological tool in 
degrading metabolic processes of diverse starches and proteins; in the metabolism 
of amino acids and amino acid and sugar absorption transporters (Machida et al., 
2005, 2008; Watarai et al., 2019; Daba et al., 2021). A. oryzae is considered by 
the FDA as “generally recognized as safe” (GRAS), which refers to any substance 
intentionally added to foods, which must be subjected to revision and approval 
before its commercialization, unless the substance is generally recognized among 
qualified experts (Gad, 2005; FDA, 2019). Therefore, the WHO endorses the 
security in the use of A. oryzae (He et al., 2019), considering this microorganism 
adequate for its application in the food industry, such as the fermentation of foods, 
the production of alcohol and vinegar, in the pharmaceutical and cosmetics industries 
via the formulation of drugs and depigmenting agents. These applications are due 
to the production of enzymes and secondary metabolites such as lipases, cellulases, 
pectinases, β-galactosidase, amylases, kojic acid, malic acid, fumaric acid, pheluric 
acid and others (Daba et al., 2021). 

Therefore, this study focuses on reviewing investigation and literature studies 
on the diverse products derived from A. oryzae, their contributions and applications 
in the agricultural areas, such as bioremediators, growth enhancers and biological 
control agents. It is worth highlighting that, although the study of A. oryzae has 
focused mostly in the industrial area, this study only considered those studies and 
investigations in which their application is directed to the agronomic part. It focuses 
primarily on kojic acid and A. oryzae strains involved in its production, since the 
fermentation process presents sustainable characteristics, and its applications are 
novel for the agricultural area. 

The main objective of this revision is to publish the potential of A. oryzae 
in scarcely studied areas of agricultural importance. Although A. oryzae has 
been studied on a large scale in industrial, food and medical areas, studies on its 
agronomic potential are few, and in Mexico its study is practically inexistent, hence 
part of this revision seeks the development in the future of scientific studies on A. 
oryzae aimed at the agricultural sector, contributing to the development and care of 
the Mexican countryside. 

Morphology and description of Aspergillus oryzae; origin, isolation and 
development

Aspergillus spp. presents hyaline septate hyphae, with a 45° dichotomic 
ramification (Cuervo-Maldonado et al., 2010). Growth forms extended mycelia 
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that cover the entire surface of the culture media (Gomi, 2014) (Figure 1). The 
balloon-shaped vesicle has a diameter between 100 and 200 µm with a structure 
formed by oval-shaped conidia, 5 to 8 µm in length that contains four soft and 
slightly coarse nuclei. The phialides are found in the vesicle and may be uniseriate 
or biseriate sterigmata. The shoots are colorless and 1 to 5 mm in length, with a 
rugged texture (Moubasher, 1993; Powell et al., 1994).  

Ahlburg (1876) first isolated A. oryzae from köji, the material fermented by 
the mold of A. oryzae planted in a steamed rice solid medium (Machida et al., 

Figure 1. Morphology of A. oryzae; A) Parts and structures of the fungus (Adapted from “Structure of Aspergillus spp.”, 2023), B) 
A. oryzae planted in a PDA medium and C) Growth of A. oryzae in steamed rice (köji). 
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2008). This fungus belongs to the Erotyomicetes class; Order: Eurotiales; Family: 
Trichocomaceae (Daba et al., 2021). The use of A. oryzae in the production of sake 
(fermented rice alcoholic beverage), vinegar, miso (soybean paste) and soy sauce, 
has been reported for at least two millennia (Furukawa, 2012; Chang et al., 2014). 
In general terms, it is considered safe and no strains that produce aflatoxins are 
known (Machida et al., 2005). 

The genes that codify the enzymatic pathway for the biosynthesis of aflatoxins 
are grouped in a 74 Kb region of the DNA in A. flavus. This group is found in 
A. oryzae, but it does not seem to be functional (Yu et al., 2004). A. oryzae and 
A. flavus are morphologically similar. Several studies suggest they are ecotypes, 
which refers to a same species which have a different expression in different 
environments, due to the interaction of their genes with the environment in which 
they are found (Kurtzman et al., 2018). This indicates that A. oryzae was the result 
of the domestication of A. flavus after centuries of planting it (Payne et al., 2006). 

Because Aspergillus oryzae was reported as a domesticated microorganism, 
it cannot be found in nature. However, there are some reports that mention the 
isolation of A. oryzae from foods, plants and soils, appearing less frequently (Klich, 
2002). A historical file described that A. oryzae should be isolated from a spike 
of rice, indicating that it could have existed in nature before its domestication 
(Murakami, 1980). 

This fungus grows in several media, including potato dextrose agar, where 
it grows particularly fast in 7 days at 25 °C (Moubasher, 1993). Its stage of 
sporulation begins on day 7; when growth reaches 7 to 8 cm, yellow ring begins to 
form, and which will gradually turn green (Daba et al., 2021). The ideal conditions 
for the development of A. oryzae include a slightly acidic pH between 5 and 6, its 
temperature must range between 32 and 36 °C (±1 °C), and variations in temperature 
above 44 °C inhibit its growth. These fungi show an efficient development in media 
with water activity above 0.8 and they rarely grow below this range (Gomi, 2014). 

Applications of Aspergillus oryzae and its possible implementation in agriculture

The versatility of A. oryzae is reflected in the wide variety of areas in which 
it can be applied (Figure 2), since it is highly effective in the manufacturing of 
biotechnological products, due mainly to its metabolic and enzymatic diversity (El-
Enshasy, 2007). 

Lee and collaborators (2016) provided a metabolic profile obtained during the 
fermentation of köji with A. oryzae, which comprises the secondary metabolites 
secreted in the fermentation process, classifying them into; a) sugars (xylose, 
fructose and glucose); b) polyols (glycerol, erythritol, xylitol, sorbitol y myo-
inositol); c) organic acids (succinic acid, glyceric acid, fumaric acid, malic acid, 
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kojic acid, citric acid and gluconic acid); d) phenolic acids (4-hydroxybenzoic 
acid and ferulic acid); e) amino acids (alanine, proline, glycine, serine, threonine, 
aspartate and GABA); f) fatty acids (palmitic acid, linoleic acid, oleic acid and 
pinellic acid); and g) vitamins (vitamin B3). Each one of these compounds has 
different antimicrobial, antioxidant, anticarcinogenic and antiviral properties, as 
well as hormonal compounds and metal chelators (Frisvad et al., 2018; Daba et al., 
2021).  

The application of A. oryzae in the production of  malic acid and fumaric acid 
(Xu et al., 2012; Brown et al., 2013) proposes the possibility of the creation of a 
biorefining process for the production of organic acids and enzymes, replacing the 
currently used polymers derived from crude oil (Brink et al., 2023). The biorefining 
process can be enhanced by incorporating agricultural by-products, inexpensive 
non-food substrates, reducing production costs and providing an option free of any 
chemical products (Jiménez-Quero et al., 2020). 

The microbial enzymes used in the industry have proven to be better in their 
application, as well as inexpensive and respectful to the environment in comparison 
with chemical products (Whiteley and Lee, 2006). They have technical-economic 

Figure 2. Areas of application of Aspergillus oryzae.
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advantages, meaning shorter production times, better space per enzyme unit 
produced and unlimited potential in terms of availability of new enzymes (Scriban, 
1985).

There are reports on the application of A. oryzae in the process of fermentation 
of grape pomace with the production of enzymes (cellulase, pectinase and tannase), 
which facilitate the aqueous extraction of polyphenols (gallic acid, sinapic acid and 
ferulic acid) with antioxidant and prebiotic properties, such as food additives, where 
A. oryzae has a greater production and selectivity of tannase under humid conditions, 
having a positive effect on the antioxidant activity, which can be influenced by the 
production of galic acid (Meini et al., 2021). On the other hand, A. oryzae can 
stimulate ruminal fermentation by improving the consumption and digestion of the 
food and dry matter in cattle, by applying it as a microbial additive in the cattle feed 
(Sosa et al., 2022). At the same time, the efficiency in the increase of volatile fatty 
acids has been proven, making A. oryzae an element of improvement to potentialize 
the diets of ruminants in a different way. It also exerts an influence on the supply of 
enzymes in maize, oat hay and alfalfa hay silage (Kong et al., 2021). 

Technological progress has taken advantage of the potential of A. oryzae  
(Matsunaga et al., 2002) for industrial use in the development of detergents, pigments 
and antioxidants, (Christensen et al., 1988; Machida et al., 2008; Panchanawaporn 
et al., 2022). Likewise, its application in the fermenting of foods (Machida et al., 
2008; Yasui et al., 2020) and the implementation in the production of metabolites 
such as organic acids and plant growth regulators are important areas of study (El-
Enshasy, 2007; Siddiqui, 2016). It can also be useful in biological activities such as 
in veterinary science as probiotics for poultry and livestock feed digestive (Lee et 
al., 2006; Murphy, 2021; Podversich et al., 2023).

A.oryzae as a soil bioremediator, growth enhancer and biological control

A. oryzae can be an alternative for the development of a sustainable and eco-
friendly agriculture, specifically in Mexico, where their applications on the field are 
not a topic of study. The following information describes some areas of opportunity 
where this microorganism can be applied on the field, in order to pave the way for 
possible scientific studies aimed at the Mexican countryside. 

Endophytic plant fungi are those which live on plant tissues and cause no visible 
harm. Due to this, a mutualistic relationship (endophyte-host) is occasionally 
identified, which unleashes the production of bioactive substances (secondary 
metabolites, enzymes etc.) which exert an influence on growth enhancement, 
the survival of the host under diverse environmental conditions, the reduction 
of susceptibility to diseases, and helping control pest insects and plant pathogen 
agents (El-hawary et al., 2020; Murali et al., 2012; Sharma and Singh, 2021).
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Although A. oryzae is not commonly reported as a natural endophyte, information 
has been provided on its isolation in Ginkgo biloba roots in China (Machida et al., 
2005). Sun and collaborators (2018), in the study of the inoculation of Raphanus 
sativus seeds with the strain A. oryzae BNCC341706, established it as a fungus 
with endophytic properties, since it did not affect the germination of the inoculated 
seed and instead promoted the growth of the R. sativus culture, which reached a 
height of 116 mm in comparison with the control, which had a height of 99.6 mm. 
Another effect of the use of A. oryzae was reflected on the health of its main pest 
insect Plutella xylostella, affecting its consumption parameters, weight of larvae 
and pupae, which opens the possibility of treating cruciferous seeds and the control 
of pest insects using A. oryzae.

Likewise, as bioremediating agents, endophytic fungi have proven to be efficient 
in the degradation of contaminants, leaving no traces of toxic by-products (Skinder 
et al., 2022), which is advantageous, due to its biomass, long life cycle and network 
of  hyphae (Sun et al., 2012), along with its ability to degrade chemically toxic 
substances by modification or acting upon its chemical bioavailability (Bornyasz et 
al., 2005). In the case of A. oryzae as a bioremediating agent, the in vitro study of 
the A. oryzae strains AM1 and AM2 displayed the ability to degrade atrazine (90%), 
endosulfan (56 and 76%) and chlorpyrifos (50 and 73%), while also obtaining an 
adequate development under high concentration of pesticides, which generates the 
possibility of degrading this type of chemical products (Barberis et al., 2019).   

The OTA is a microtoxin that affects human health and agricultural products, 
which has led to a search for control measures, therefore, biodegradation has been 
proposed as a promising method. The strain A. oryzae M30011 is able to degrade 
OTA by up to 94% in 72 h, at a pH of 8, a temperature of 30 °C and a concentration 
of the inoculant of 104 UFC mL-1. On the other hand, a reduction in the levels 
of aflatoxins is an important matter, since they are a threat to worldwide food 
security (Xiong et al., 2021). The strain A. oryzae M2040 has been proven capable 
of inhibiting  the production of AFB1 by 87%, and the proliferation of A. flavus, 
under in vitro conditions, and in peanuts by successfully displacing the aflatoxin-
producing fungus  by secreting antimycotic compounds, which have not been 
reported (Alshannaq et al., 2018). These studies back the potential of A. oryzae in 
the agricultural and food industry.

The potential of the use of A. oryzae has been emphasized in the development 
of research work as a growth enhancer and a biological control agent, shown in 
Table 1. 

The ability of A. oryzae to secrete enzymes is an alternative for the development 
of microbiological compounds, since biological activities are carried out which can 
be adapted in the area of agronomy. An example of this is the antifungal activity of 
xylanase produced by the strain A. oryzae MN894021, which displayed a reduction 
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of 75, 90 and 100% in the incidence of Botrytis cinerea, Fusarium solani, F. 
chlamydosporum, F. incranatum, Macrophomina phaseolina, Rhizotocnia solani 
and Sclerotinia sclerotiorum in broad bean seeds covered with xylanase, providing 
protection against the invasion of these phytopathogenic fungi (Atalla et al., 2020). 
The results obtained from the xylanase produced by the strain A. oryzae MN894021 
coincide with the activity of the xylanase from Trichoderma harzianum kj831197 
against Corynespora cassiicola, Alternaria spp., F. oxysporum and Botrytis fabae 
(Ellatif et al., 2022).
 The control of phytopathogens is an important challenge for agriculture. The 
development of sustainable, environmental, easy and eco-friendly control processes 
is constant in current research; an option is the biogenic synthesis of bioparticles 
(Zhang et al., 2020). The strain A. oryzae MTCC3107 has been implemented in the 
formulation of silver nanoparticles (AgNP), whose antimicrobial potential against 
Sclerotinia sclerotium reflected an inhibition of 100% at a concentration of 100 µL 
mL-1. The role of A. oryzae in the formulation is due to the secretion of amylase, 
which catalyzed the AgNP production process, making it a green synthesis process 
(Gupta and Saxena, 2023).  
 The study and publication of information related to the potential of A. oryzae 
serve as a support for future investigations in the area of phytopathology, since it 
has been relatively scarcely studied. Despite A. oryzae having a wide margin of 

Table 1. Use of A. oryzae as a growth enhancer, pest control agent and bioremediator od contaminated soils.

Application Strain Crop / Pest Results Reference

Arsenic 
biorremediator 

and growth 
enhancer

FNBR_L35

Oat (Avena 
sativa), Calendula 

(Calendula 
officinalis), 

Ashwagandha 
(Withania somifera)

Effects of bioaccumulation 
and biovolatilization of 

arsenic in concentrations 
of 100 to 10,000 ppm in 
a period of 21 days and 

enhancement of plant growth

Singh et al., 
2015

Entomopathogen XJ-1 Locusta migratoria Mortality in third instar of 
the insect

Zhang et al., 
2015

Growth enhancer 
and control 

agent
BNCC341706

Radish seeds 
(Raphanus stativus), 
Puntella xylostella

Greatest plant height.
Inhibition of feeding and low 
weight of larvae and pupae

Sun et al., 
2018

Removal of 
glyphosate AM1 and AM2 In vitro

Degradation of 50% in 
glyphosate concentrations, 
long periods of incubation 

and permanence of the 
fungus

Carranza et al., 
2019

Entomopathogen
USMN05
USMM03

NRRL2097
Spodoptera litura

Mortality of 20% and 
inability to produce 

aflatoxins

Fitriana et al., 
2021
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produced bioactive substances, those applied in this area are few. Some activities 
and metabolites are presented in Table 2.

Table 2. Activity of bioactive substances produced by A. oryzae against plant pathogens.

Bioactive 
substances Strains Application Result Reference

Kojic acid NRRL 447, 
552, 552, 1730 
Y30038 (S-03)

Prevention of contamination 
by toxins in agricultural 

products 

Reduction of aflatoxins 
in peanut

Dorner et al., 
1998

Kojic acid * Insecticide:
Glyphodes pyloalis

Inhibition of 
phenyloxidase activity

Sharifi et al., 
2013

Oryzaeins A-D KM999948 Antiviral:
TMV

Rates of inhibition of  
22.4 – 30.6%

Zhou et al., 
2016

Xylanase MN894021

antifungal:
Alternaria alternata,

Fusarium oxysporum, Phoma 
destructor, Rhizotocnia solani 

and Sclerotium rolfsii

Reduction of the live 
growth

Reduction in 
percentages of incidence 

of root rotting

Atalla et al., 
2020

Kojic acid * Antifungal activity:
Sclerotinia slerotiorum

Inhibiyion of chitin and 
melanin synthesis

Reduction of oxalic acid 
of the virulence factor

Zhu et al., 
2022

*Strain not provided by the author.

Kojic acid, secondary A. oryzae metabolite; alternative for the control of plant 
pathogens

Within the main secondary metabolites produced by A. oryzae, kojic acid is one 
of the most relevant (Figure 3) (Yamada et al., 2014). Its application in the control 
of phytopathogenic agents and pest insects is a relatively new topic; however, the 
investigation reports show that this application may be a feasible alternative for the 
control of pests in crops. 

A. oryzae has bactericidal, fungicidal and insecticidal effects (Mohamad et al., 
2010). It acts in relation with the inhibition of oxidative enzymes in both plants 
and arthropods. Studies have shown that kojic acid efficiently inhibits the rate of 
formation of pigmented products and absorption of oxygen when compounds such 
as catecholamines (DL-DOPA, dopamine and norepinephrine), are oxidized by the 
enzyme tyrosinase (Kahn, 1995; Kahn and Ben-Shalom, 1997). 

Mahmoud and collaborators (2023) analyzed the insecticidal activity of 
kojic acid produced by the strain A. oryzae ASU44 (OL314732), against Aphis 



Mexican Journal of Phytopathology. Review. Open access

García-Conde et al.,  2024. Vol. 42(1): 1. 11

gossypii, vector of the Cotton leafroll dwarf virus (CLRDV) (Mahas et al., 2022). 
They evaluated the difference between the kojic acid extracted from the strain 
A. oryzae ASU44 (OL314732) and synthetic kojic acid, and indicated that the 
kojic acid produced by A. oryzae ASU44 (OL314732) was more efficient against 
Aphis gossypii, with a medium lethal concentration (CL50) of 11.2 ppm, a lethal 
concentration (CL90) of 50.3 ppm, and a lethal time of (LT90) of 7 days, since the 
results are lower than those for synthetic kojic acid, highlighting their application 
as an efficient and inexpensive  in vitro evaluation model (Mahmoud et al., 2023). 

Likewise, the antifungal activity of kojic acid has been evaluated with A. terrus, 
A. flavus, A. parasiticus, A. fumigatus, Penicilium and Sclerotinia sclerotiorum (Kim 
et al., 2012; Kim and Chan, 2014; Zhu et al., 2022). In the case of S. sclerotiorum, 
kojic acid inhibits the biosynthesis of melanin, which affects the development of 
sclerotia and the biosynthesis of chitin and β-1,3-glucanos, which alters the cell 
walls and the growth of the mycelium, reducing in its entirety the symptoms of 

Figure 3. Characteristics and basics of kojic acid based on reports by Phasha et al. (2022) and Siddiquee (2018).
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S. sclerotiorum in soybean pods with 50 mM de ácido kójico. It has the ability to 
prevent and inhibit symptoms of S. sclerotiorum. In turn, it is more effective than 
commercial fungicides (carbendazim and prochloraz) (Zhu et al., 2022). 

More frequently, phytoparasitic nematodes have been pointed out as the cause 
of important economic losses in several crops, fluctuating around $77 billion 
dollars worldwide, which raises concerns in agriculture, horticulture and forestry 
(Yadav, 2017; Seo et al., 2019). For example, Meloidogyne spp., the gall-forming 
nematodes, is responsible for annual losses of up to $100 billion dollars. Kim and 
collaborators (2016) established a method to control these nematodes using kojic 
acid as the active ingredient, which was produced by the strain A. oryzae EML-
DML3PNa1 obtained from white dogwood (Cornus alba). During their experiments, 
an inhibiting effect was displayed on the hatching of eggs and the development of 
larvae, and the use of kojic acid was suggested along with a dispersing, penetrating 
or surfactant agent, in order to improve absorption and the effect of the product 
on the crop (Kim et al., 2016). The nematicidal action of the kojic acid reported 
a mortality of 87.6% in juvenile Meloidogyne incognita under conditions of 20% 
of a filtrate of a fermentation broth. It displayed inhibition in the incubation of the 
nematode and a mortality dependent on the dose, with mean effective concentration 
values (CE50) of 195.2 µg mL-1 and 238.3 µg mL-1, respectively, 72 h after exposure, 
which suggests that is has potential as a biological control agent (Kim et al., 2016). 

Interest in safe agricultural products for human health and free of contaminants 
is on the rise, due to awareness on residual toxicity caused by the use of pesticides. 
The implementation of microorganisms with nematocidal activity is recommended, 
since they are respectful with the environment because they are obtained from natural 
products, as in the case of kojic acid, therefore its implementation in agronomy 
opens a door for the development of sustainably inexpensive, environmentally 
friendly products that, above all, do not harm the health of people who apply them. 

Conclusions

This study highlights the potential of the A. oryzae strains and its derivatives 
(enzymes and secondary metabolites), considering the ability to compete with 
commercial chemical products as pesticides, since it presents insecticidal, 
fungicidal and nematocidal characteristics, which represent an inexpensive and 
sustainable alternative, since the way in which it is produced excludes the use of 
costly products. Developing new investigation work and opting for the application 
of products based on A. oryzae at a greenhouse level is required to confirm its 
adaptability in conditions outside the laboratory and verify if the benefits of A. oryzae 
are maintained or reduced in such a way that they can be used in the field. Finally, 
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the study of A. oryzae and its by-products is scarcely studied in Mexico, making it 
a debatable topic to be exploited for the benefit of the Mexican countryside, since it 
opens a new aspect of study for the development of products that benefit crops and 
for the control of phytopathogenic agents. 
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